慧名科技带你了解什么是智能机器人——机器人知识

来源:名曼机器人 时间:2018-11-20 阅读量:827

慧名科技带你了解什么是智能机器人——机器人知识


       2018 世界人工智能大会于 9 月 17 日在上海召开,多位大咖在大会上都传递出一个观点—— 企业离不开 AI,AI 正在改变人们的生活。智能机器人作为典型的 AI 产品,机器人在助力企业智能化的过程中,扮演着越来越重要的角色。从谷歌 AlphaGo 实现围棋 60 连胜,到医疗上对恶性肿瘤的检测概率提升,再到各种对话机器人上,各个领域都有机器人的身影。很多人都很好奇:服务型机器人是如何运作的,如何理解字词句段并对此作出回应?下面就让小编给大家分享下AI 机器人在企业服务中的实践。

2018世界人工智能大会

       以下内容来自刘云峰博士现场分享,在不改变原意的基础上有部分删减:
       人工智能有三大领域:视觉、语音、语义。其中,图像和语音算法成熟度已经很高,且要远远高于语义。在中文机器阅读理解比赛中,人的准确率大概是 95%,机器做到的最高水平只有 80%,还有 15% 的差距,这是一个挑战,也是一个机会。
       具体应用上,目前来看,比较多的人工智能公司,首先需要在企业服务方面落脚,这是最容易看到的商业模式,也是 AI 技术最容易被认可的一个商业模式。


企业服务机器人 VS 聊天机器人,差别在哪?


       今天主要针对企业服务机器人展开介绍。
       首先说下企业服务机器人和聊天机器人的差别。第一,聊天机器人一般是虚拟形象,说话不要求很严谨,反而是比较风趣,这种机器人一般叫情感陪护型机器人。而企业服务机器人代表企业形象,代表企业去服务顾客,表达和对话都比较严谨,说话要负责,不能随便回答。
       第二,两种机器人的技术路径也不一样,企业服务机器人是一个垂直领域,在专业领域和用户对话,而不是开放的聊天,从这个角度来看技术难度变轻了;但是和通用机器人相比,它对准确率要求更高。


怎么做好企业服务机器人


       想做一个迎宾机器人,核心要把语义理解、意图理解做好。举个例子,一个电商产品不同用户有不同的反馈,比如“要买的裙子怎么没有腰带?”或者“充电器为什么没有一起寄过来?”这些问题看起来很杂,但背后语义都是同一个,就是商品零配件少发了。
       在解决意图理解上,技术路线上经历了好几轮变迁。2000 年左右就已经有企业服务机器人这种产品形态,只是当时解决意图理解的技术比较简陋。早期是用本体 + 句法模板的方式来实现,比如用本体完成理解词的问题,用句法模板完成理解对句的问题。
       随后像百度、Google 等公司兴起以后,搜索技术也被用在客服机器人里。在这个阶段,一般用同义词的方式解决词关系的问题,用词权重解决抽象核心语义的问题,用文本相关性解决匹配的问题。再后来深度学习技术出现,在语义理解上,深度学习相比之前的技术有很大提升。

深度学习,是如何解决语义理解?


       在计算机里面,用文本方式表示的语言,比如汉语和英文,是一种符号,但这不是计算机能理解的符号。计算机可以理解的是向量和矩阵,无论是语音、图像还是语言,深度学习都是把这些原始信号转换成计算机能理解的向量和矩阵,才能更好地做计算。
       首先完成将语言当中的词转换为向量,然后通过一个深度神经网络转化成句的向量,再通过句的向量进行更丰富的计算。这个过程中,会用到注意力模型,注意力模型最早来源于图像理解。举个例子,人进入到会议室,首先不会去注意有多少板凳,虽然板凳这些信息占据面挺大,但人首先会挑选自己注意的东西去看,比如说注意来了哪些人,因为人在触摸信号时会选择性地去挑选。语言也是这样,用户说了很长一段话,注意力模型能够在很长的文本中,发现用户主要表达的信号。比如一个用户说“昨天刚收到货,今天天气不错,和朋友一起出去玩,一劈腿裤子开衩了”,前面的话都没有意义,他最想表达的意思是裤子开缝了,是想退货或换货。对于一个客服机器人来说,这是它要抓住的重点。注意力模型之后是映射层,相当于完成一个归一化,之后机器人才知道怎么去回复用户。


阅读理解


       刚才讲的都是需要人事先把知识库整理好给机器人用,为在线机器人去解析、调用、推理。还有一类,可能所有的知识都是一些原始文档,它们没有形成知识库。比如一家银行有很多线下商家优惠活动的书面文档,这类活动经常更新替换,没有人可以完全记住这些文档内容,反而是机器比较擅长做这个事情。假设有一个用户问题,需要从文档当中找答案,首先机器要找到哪个文档可以解答,再找到文档当中哪一句话可以解答,这个过程叫阅读理解。阅读理解在国外比赛已经做的挺久,国内才刚刚开始,这一块的技术还是比较新。


机器人知识库的运营


       刚才讲了客服机器人在线处理用户的请求,理解用户的请求,其实客服机器人还做了很多离线的工作。一个机器人并不仅仅是一个在线的服务,它是一个离线服务和在线服务同时包含的系统工程。机器人解答不了用户的问题,有时候并不是因为意图理解不够好,而是机器人没有知识去应对当前的回答。这就是知识库运营所要解决的问题,有几个方面:
       一是新知识点的发现。有些热点的知识点用户已经在问,但是知识库里面是缺失的,这部分问题可以交给运营人员添加相应的问题回答。
       二是知识点的细化。一开始机器人的知识点没有深入到用户的问题细节里面,这种情况可以细化,把一个知识点拆分成多个知识点。
       三是知识点的优化。比如说客户看到了机器人回答,但是仍然转人工了,这是因为答案并没有解决问题,说明答案需要进一步优化。


智能机器人趋势


       前面我们讲了企业服务机器人的特点、如何解决语义理解、背后依托知识库以及产品能力,最后我想讲下企业服务机器人趋势。大家一开始认为企业服务机器人是客服机器人,主要是解决节省人工成本,后来发现,它其实是企业的虚拟助手。包括 Gartner 最近的报告,预测到 2020 年有 20% 的用户访问企业服务时,首选的是对话式的入口。
       以前 PC 时代访问银行网站,网页每个菜单对应办理某个业务的入口。到移动手机时代,屏幕没有那么大,APP 能放的入口也没有那么多,客户都想快速找到业务入口。如果放搜索框放在 APP 最上面,通过搜索功能,搜索“修改密码”会出来十几条修改密码的入口,用户也不知道哪一条,体验并不好。

       所以,将来可能更多会是对话交互的方式,这是未来的趋势。比如说修改密码,机器就会反问你想修改什么密码,再根据你提供的信息,给你具体操作页面。通过用户和机器人的交互,把用户画像沉淀下来,跨越时间和空间把用户画像融合在一起,对营销、推荐和风控做一些数据上的支持。客服中心从一个成本中心转变为一个用户研究中心,这也是一个趋势。


       目前,慧名(深圳)科技有限公司全国首款智能起名机器人正在火热招商中,是机器人代理创业投资的大好选品,名曼机器人已在全国全面布局,受到广大代理商及使用者的广泛好评!

关注“名曼机器人”微信公众号,获取更多机器人商业资讯!


推荐新闻